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Light scattering from polymer spherulites in crystal growth simulation
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Abstract

A three-dimensional simulation is carried out in the growth process of a polymer spherulite and the Hv light scattering intensity is calculated.
In the simulation, a crystallite is represented by a thin disk with the optical axis perpendicular to the disk. In a growth step, each crystallite
generates new crystallites, the optical axes of which are fluctuated. The simulation results reproduce prominent features observed in the light
scattering experiments on polymer spherulites: the scattering intensity that consists of a fourfold-symmetry intensity component and an isotropic
intensity component, the scattering angle dependence, the relative magnitude and the development with crystallization time of these intensity
components. A new interpretation is proposed for the Hv light scattering intensity from the polymer spherulites in the growth process.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Light scattering gives information on the structure in the
scale of the order of mm, and the orientational correlation be-
tween the optical elements can be investigated by the polar-
ized light. It has been therefore applied to the analyses of
the internal structure of a polymer spherulite.

It is well known that the Hv light scattering from polymer
spherulites gives a fourfold-symmetry scattering pattern called
a ‘four-leaf clover’. The fourfold-symmetry pattern is qualita-
tively explained by the ideal spherulite model [1]. In addition
to the scattering intensity with the fourfold symmetry, the scat-
tering intensity independent of the azimuthal angle m is ob-
served experimentally and called the isotropic scattering
intensity. The method to treat the observed scattering intensity
as a sum of these intensities is often referred to Keijzers’ com-
bination model [2], and in this model these two intensity com-
ponents have been independently analyzed. The intensity
independent of the azimuthal angle is interpreted to arise
from the orientational correlation between the crystallites
constituting a spherulite.
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On the other hand, several models for the internal structure
of a polymer spherulite have been proposed to simultaneously
explain these intensities [3e5]. Experimentally the correlation
between these intensities is confirmed to exist in the growth
process of spherulites [6,7]. Any structure model proposed
so far, however, could not satisfactorily reproduce the relative
magnitude of these intensities observed experimentally.

In this paper, we perform a three-dimensional simulation in
the growth process of a spherulite and calculate the Hv light
scattering intensity in order to simultaneously explain the
two intensity components and important features characteriz-
ing these intensities. We firstly review the experimental results
on the Hv light scattering and the related models proposed on
the polymer spherulite structure. Then the three-dimension
model for simulation is introduced, and the simulation results
are compared with the experimental ones in terms of the
Hv scattering intensity during the spherulite growth process.
Finally, the origin of the isotropic scattering and the develop-
ment of Hv scattering intensity are discussed.

2. Hv light scattering and spherulite structure models

In this section, the background of this study is set out
in more detail. The experimental results on the Hv light
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scattering of polymer spherulites are often analyzed by
Keijzers’ combination model [2].

(1) The observed Hv light scattering intensity is composed of
the intensity component which has a fourfold symmetry
regarding the azimuthal angle, m, and the one independent
of m. The former is referred to the fourfold-symmetry in-
tensity component I4-fold(q, m) h I(q, m)� I(q, m¼ 0�)
and the latter, the isotropic intensity component Iiso(q) h
I(q, m¼ 0�) in this paper, where I(q, m) is the observed
scattering intensity and q is the magnitude of the scattering
vector.

(2) The fourfold-symmetry intensity component can be well
approximated by the ideal spherulite model [1], which
gives an intensity maximum at a polar scattering angle,
q, corresponding q inversely proportional to the radius of
spherulite.

(3) The isotropic intensity component decreases with polar
scattering angle, and its variation is fitted by the square
of the Lorentz function [6,7].

In the ideal spherulite model a volume element in the
sphere is uniaxially birefringent with its optic axes in the ra-
dial and tangential directions. The Hv scattering intensity
from the ideal spherulite, Iideal(q, m), is given by [1]

Iidealðq;mÞ ¼
�

4p

3
R3

�2

Cn

�
3Da cos2 q sin 2m

q3R3

� ðqR cos qRþ 3SiqR� 4 sin qRÞ
�2

; ð1Þ

where R is the radius of a spherulite, C, a constant, n, the
number of spherulites, Da, the difference in polarizability
between the radial and the tangential directions, and SiqR ¼R qR

0 ðsin x=xÞdx. Eq. (1) explains the four-leaf clover scattering
pattern, but does not give any finite intensity at m¼ 0�.

The isotropic intensity component Iiso(q) which is indepen-
dent of m, is supposed to originate from the orientation corre-
lation between the crystallites in the spherulites [2,7]. Stein
and Wilson presented a general theory of the light scattering
from a polymer film possessing randomly correlated oriented
fluctuations of optically anisotropic elements [8]. In their ap-
proach, a structure is described in terms of correlation func-
tions describing fluctuations in polarizability, magnitude of
anisotropy and orientation of the optical axis. Stein and
Stidham explained that a random-walk theory results in the ex-
ponential correlation function f(r)¼ exp(-r/a) for crystals sep-
arated by distance r which may fit the correlation functions for
many systems [9]. When the spherulite contains crystallites
with randomly correlated oriented fluctuations in the orienta-
tion and the correlation function is the exponential function
with a correlation length much smaller than the radius of
spherulite, the isotropic intensity component is given by

I
ð0Þ
iso ðqÞ ¼

32p2Cnd2

45

R3a3�
1þ ðaqÞ2

�2 ð2Þ
where a is the correlation length and d is the anisotropy in po-
larizability of crystallites. In isotactic polystyrene (iPS), PET
and polyethylene, the observed isotropic intensity component
has been shown to be expressed by Eq. (2) [6,7,10], and the
correlation length a increases with spherulite growth [6,7].
The experimental Hv scattering intensity is thus well inter-
preted in terms of Keijzers’ combination model. Keijzers
et al. attributed the fourfold-symmetry intensity component
I4-fold(q, m) to the spherulitic crystallites formed at the primary
crystallization, and the isotropic intensity component Iiso(q) to
the randomly oriented crystallites formed at the secondary
crystallization [2]. Mutual interference effects between the
two components are not considered.

In a previous light scattering study on the crystallization
process of PET [7], however, it has been shown that the optical
anisotropy giving the fourfold-symmetry intensity component,
Da, and the one giving the isotropic intensity component, d,
are proportional to each other, and that the ratio, d/Da, is
almost independent of crystallization time with little depen-
dence on crystallization temperature. The proportional relation
has been also shown to exist between the correlation length
a determined from Iiso(q) and the spherulite radius R from
I4-fold(q, m) [6,7]. These results suggest that these two optical
anisotropies, hence two intensity components, originate from
the same crystallites with certain arrangements in a spherulite.

In the disordered spherulite model [3,4] the contribution to
the isotropic intensity component comes from defective spher-
ulitic structure and is treated as a perturbation from the ideal
spherulite. Stein and Chu presented a theory of the light scat-
tering from an anisotropic spherulite with fluctuations in optic
axis orientation [3]. Two limiting cases, radial and angular dis-
orders, were considered. Calculations were carried out for var-
ious values of the correlation distance characterizing the radial
or angular disorder. Increased radial disorder led primarily to
increased relative Hv scattered intensity at angles larger than
that of the scattering maximum, whereas angular disorder
enhanced relative intensity at angles less than the maximum.
Yoon and Stein developed a lattice theory of the orientational
disorder in two-dimensional spherulites in which the orienta-
tion direction of the optic axis in lattice cells is allowed statis-
tically to deviate from its mean value in a manner correlated
with the orientation in neighboring cells [5]. Their results
are in good agreement with the predictions of Stein and Chu’s
theory. Since the correlation length a is determined by the
local correlation of fluctuation in this model, the increase in
a with spherulite growth is left unclarified.

An immature shape of crystal aggregate in the spherulite
growth process is proposed as another factor to account for
the deviation from the ideal spherulite model [11]. In this
fan model, the scattering intensity from a pair of opposing mi-
nor sectors is analytically calculated in two dimensions, and
the intensity profile is shown to approach that of the ideal
spherulite with increasing central angles.

These models depict the important aspects of the deviation
from the ideal spherulite, but the considerations have been
limited in two dimensions. In the simulation, a condition has
been imposed on the crystal aggregate to force the growth in
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spherical symmetry, and in the analytical calculations, only
simple models can be handled. Since the actual spherulite
formation is a result of unlimited growth, the growth of a crys-
tallite aggregate is simulated in three dimensions without
invoking a lattice, and the growth process is analyzed includ-
ing the fanning process.

3. Simulation method

A polymer crystal typically consists of the lamellae formed
by the folded chains. The lamellae stack and iterate branching
by screw dislocations and overgrowth, so the crystal fans out.
After sufficient growth, it becomes a spherical crystal, a
spherulite.

In our simulation, the structure unit is a thin disk called
a crystallite, which represents a stack of lamellar crystals.
Though the lamellar stack contains both amorphous and crys-
talline regions, and the structure can affect light scattering in-
tensity, we assume that the lamellar stack has uniform optical
property for simplicity. The fluctuations in orientation of the
growing crystallites are introduced, which give stacking and
branching of crystallites. The spatial overlapping of crystal-
lites is prohibited in the simulation, which accounts for the
lamellar crystals to stop growing when they collide with
each other.

A crystallite is a thin disk with the diameter of unit length.
We ascribe two unit vectors n and g to the disk; n is normal to
the disk and g gives a growth direction. The algorithm of the
crystal growth consists of two parts: the generation of new
crystallites and the elimination of spatially overlapped
crystallites.

The first crystallite, the nucleus, is placed at the origin of
Cartesian coordinates with n and g parallel to the z-axis and
x-axis, respectively. At the first step, six new crystallites are
generated unit length away from the center of the nucleus
on the plane of the nucleus. Their positions are determined
by the vector g as follows. A vector g1 is the same as the vector
g, and vectors g2, g3,., g6 are given by rotating the vector g
with increments by 60� in the xy plane (Fig. 1). Each crystal-
lite generated in the direction of vector gi (i¼ 1,2,., 6) has
the vectors n and g equal to n and gi of the nucleus, respec-
tively. Then each new crystallite is tilted by the Euler angles
a, b and g, where a is random between 0� and 360�,
bt hb¼ constant and g¼ 0� (Fig. 2). Here, the rotation a ran-
domizes the axis of tilting bt. The vectors n and g of generated
crystallites are tilted by the rotation bt. The left part of Fig. 3

Fig. 1. The nucleus (a solid line) and the crystallites generated at the first

growth step (broken lines). The arrows indicate the vectors n, g1, g2,., g6.
shows the crystal aggregates at the end of the first step. At the
second step, the procedures of crystallite generation and tilting
are the same as those at the first step except that no crystallite
is generated in the direction of �g. Then five crystallites are
generated (Fig. 3). This prohibits the growth in the direction
of the parent crystallite. After the second step the same proce-
dure is repeated for crystallites generated at the previous step.

Secondly we describe the elimination process of spatially
overlapped crystallites. First a generated crystallite is checked
whether it overlaps the crystallites generated at the former
steps. If it does, then the crystallite is removed. The crystallite
that does not overlap the old crystallites is further checked
whether it overlaps the crystallites generated at the same
step. When it overlaps another one, one of the two overlapping
crystallites is probabilistically removed. A probability of de-
leting is 0.5 for either crystallites. After checking all the gen-
erated crystallites, we fix the crystallites generated at a given
growth step.

This algorithm is an extension of the simulation by Yoon
and Stein [5]. We expect that the random fluctuations of
crystallite orientations give rise to an orientation correlation
decaying exponentially, which gives the isotropic intensity
component.

Fig. 2. Tilting of the crystallite by the Euler angles of rotation a and b.

Fig. 3. The crystallites generated at the second step. The left part shows the

crystallites after the first step and the plane of a generated crystallite indicated

by a square plane. The right part shows the mother crystallite and new crystal-

lites generated at the second growth step.
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The intensity distribution in a cross-polarized optical mi-
crograph and the Hv light scattering intensity are calculated
as follows. The optical anisotropy of a crystallite is for sim-
plicity assumed uniaxial with a unique axis in the n direction
and with the magnitude of anisotropy in polarizability of unity.
The polarizability of the surroundings must be given in order
to calculate the Vv light scattering intensity. We treat therefore
only the Hv light scattering in this paper; the calculation of the
Vv light scattering intensity will be a future issue. We fix
the directions of a polarizer and an analyzer to the x- and
y-direction in the laboratory coordinate frame, respectively.
The incident light transmits along the z-direction. Given the
orientation of a crystal nucleus, we can calculate the light in-
tensity distribution in the real and the reciprocal spaces by ro-
tating the grown spherulite in the laboratory coordinate frame.
The orientation of a rotated nucleus, n0(r), is expressed by

n0ðrÞ ¼ bDða;b;gÞn�bD�1ða;b;gÞr
	

ð3Þ

where r is a position vector and bDða; b;gÞ is the matrix that
represents the Euler rotation with the Euler angles a, b and g.

The intensity at (x, y) of the spherulite image under crossed
polars is given by

Iðx; yÞ ¼
�Z �

n0ðrÞ$bx��n0ðrÞ$byÞdz

�2

; ð4Þ

where bx and by are the unit vectors parallel to the x and y axes,
respectively.

The Hv scattering amplitude F(q) of the spherulite is given
by the Fourier transformation of ðn0ðrÞ$bxÞðn0ðrÞ$byÞ,
Fðq;a;b;gÞ ¼

Z �
n0ðrÞ$bx��n0�r�$by�exp

�
iq$r

�
dr: ð5Þ

The scattering amplitude of the spherulite with nucleus ori-
ented the direction determined by a, b and g is given by
Eq. (5) and the scattering intensity, by jF(q,a,b,g)j2. At the
early steps of the simulation, the spherulite has an immature
shape like the one in the fan model. In order to compare the
calculated intensity with the experimental results, the scatter-
ing intensity is averaged over the orientation of the nucleus.
The scattering intensity I(q) is given by

IðqÞ ¼

Z
jFðq;a;b;gÞj2sin bdadbdgZ

sin bdadbdg

: ð6Þ

This average corresponds to the situation that the scattering
volume contains many spherulites whose orientations are ran-
dom. The changes of the scattering pattern due to the interfer-
ence, truncation among spherulites and the distribution of
spherulites’ size are not taken into account in the present cal-
culation. We assume no distribution of spherulite size in order
to compare with the experimental results of PET [7], where the
nucleation is approximately instantaneous. We use Rayleighe
GanseDebye approximation to calculate the scattering
amplitude, which is applicable to most polymer spherulites.
For highly birefringent systems a more general treatment is
necessary [12].

The tilting angle bt is varied from 5� to 15�. The calculation
is carried out for the growth step N up to 70. The number of
steps N corresponds to the crystallization time in the experi-
ment and is a measure of the crystal size. When bt is small,
2N approximately equals to the maximum diagonal length of
the spherulite.

The experimental results used for the comparison with the
simulation results are mainly adopted from a previous study on
PET [7], where we have studied the crystallization tempera-
ture from 103 to 123 �C. The results at 110 �C shown below
are obtained under the same experimental conditions.

4. Results and discussion

The simulation results are compared with the experimental
results in the real and reciprocal spaces. Then a new interpre-
tation is proposed for the Hv light scattering intensity from the
polymer spherulites in the growth process.

4.1. Real space structure and image

Fig. 4 shows the simulated spherulite and the cross-section
through the nucleus at N¼ 15 for bt¼ 10�. The cross-section
well reproduces the structure near the spherulite core often
observed in the early stage of spherulite formation [13,14].

The effects of the tilting angle bt on the spherulite structure
are discussed first. Fig. 5a and c shows the slices of the spher-
ulite in the xez plane and the xey plane for bt¼ 10� at N¼ 20
and Fig. 5b and d shows those for bt¼ 50� at N¼ 40. The
shapes of the slices in the xez plane are similar for bt¼ 5�

and 10�. However, the slices in the xey plane for bt¼ 5�

have more hexagonal shape and the more uniform orientations
than for bt¼ 10�. Fig. 5a and c shows the effect of bt on how

Fig. 4. The simulated spherulite and the cross-section through the nucleus at

N¼ 15 for bt¼ 10�.
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Fig. 5. The slices of the spherulite in the xez plane (a and b) with thickness 0.5 and the xey plane (c and d) with thickness 1. The frames are 20� 20 for bt¼ 10� at

N¼ 20 (a and c) and 40� 40 for bt¼ 5� at N¼ 40 (b and d).
the spherulite fans out and Fig. 5b and d that on how the
orientations of the inner crystallites fluctuate.

The maximum angle 4 between the orientation of the
nucleus and that of the crystallite at a step N is one of the mea-
sures of the degree of fanning in the early stage of the spher-
ulite formation. Fig. 6a shows the growth of 4 for different bts.
The algorithm of the present simulation gives random fluctua-
tion to the orientation of crystallites, while the maximum incli-
nation is approximately proportional to N, since the crystallite
that tilts toward free space grows preferentially at the top and
bottom surfaces in the z-direction of the spherulite. The slopes
of the lines in Fig. 6 are 3.2, 7.1 and 13.2 for bt¼ 5�, 10� and
15�, respectively. The btN dependence of 4 shown in Fig. 6b
indicates that the rate of fanning is approximately proportional
to bt.

The orientations of the inner crystallites in the xey plane
fluctuate differently from those at the top and bottom surfaces
of the spherulite. In order to examine the orientation fluc-
tuation of the inner crystallites, the orientation correlation be-
tween the nucleus and the crystallites at a step N is defined by

hðNÞ ¼ hð3n0$nN � 1Þ=2i; ð7Þ
where n0 and nN are the normal vectors of the nucleus and the
crystallite generated in the xey plane and the average is
taken over all crystallites generated at a step N lain in
�0.5< z< 0.5. Note that the correlation is not taken between
all pairs of crystallites but between the nucleus and the crys-
tallites generated at the N-th step in the xey plane. Fig. 7a
shows the change in orientation correlation with N. The corre-
lation lengths obtained by approximating the exponential
decay function in the small N range are 264.6, 31.1 and 19.2
for bt¼ 5�, 10� and 15�, respectively. When the collisions
among crystallites were not considered, the correlation length
would be 2/(3bt

2) [9], giving 90.9, 21.9 and 9.7 for bt¼ 5�, 10�

and 15�, respectively. When the crystallites collide with each
other and some crystallites stop growing, the crystallite whose
orientation is different from that of the neighbor crystallites is
more likely to stop, and hence the correlation lengths in the
simulation are larger than the ones expected from simple ran-
dom walk. The plots of f to bt

2N for bt¼ 5�, 10� and 15� ap-
proximately fall on a single line (Fig. 7b). This result shows
that the correlation length is proportional to 1/bt

2 in spite of
the increase due to the collision.

The results of Figs. 6 and 7 show that the spherulite struc-
ture depends on the tilting angle bt. (i) Change in spherulite
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Fig. 6. N dependence (a) and btN dependence (b) of 4 for bt¼ 5� (circle), 10� (triangle) and 15� (square). Radians instead of degrees are used on the horizontal axis

in (b).

Fig. 7. N dependence (a) and bt
2N dependence (b) of the orientation correlation f for bt¼ 5� (circle), 10� (triangle) and 15� (square). Radians instead of degrees are

used in (b).
shape approaching to sphere by fanning out is proportional to
btN. (ii) On the other hand the memory of nucleus orientation
is lost proportionally to bt

2N in the plane of nucleus. In other
words, the valuable btN is a measure of the shape of the spher-
ulite, while the spherulite of the same size with a smaller bt

has locally the more uniform structure.
In Fig. 7, the increase in orientation correlation is observed

at large N. In the early stage of growth, the growth direction
crystallite is less restricted and the orientation correlation is
expected to decay toward naught (hn0$nNi ¼ 1/3). When the
spherulite approaches to a sphere, most crystallites grow in
the radial direction on the growth front. In this matured stage
of spherulite growth, the orientation of survived crystallites on
the circumference in the xey plane will be random as a whole
but locally correlated to escape collision between crystallites.
The random orientation correlation around the radial direction
leads to hn0$nNi ¼ 1/2, hence h(N )¼ 1/4 as N / N. The lo-
cal correlation in orientation is expected to give a fibrous
structure. The growth tip of the slice in xey plane for
bt¼ 15� and N¼ 70 is shown in Fig. 8. This has fine areas
with uniform orientations that correspond the fibrous structure
parallel to the radial direction.

The cross-polarized optical micrographs of the simulated
spherulites at N¼ 20, 40 and 70 are shown in Fig. 9, illustrat-
ing how the spherulite fans out and becomes more spherical
with a Maltese cross. The optical micrographs in Fig. 9aec
are calculated by Eq. (4) for the spherulite rotated by the Euler
angles (a, b, g)¼ (90�, 90�, �90�), and those in Fig. 9def,
without rotation. Namely, in the former, the direction of n
and g of the nucleus corresponds to the vertical direction
and the horizontal direction, respectively, and in the latter,
the direction of n is perpendicular to the planes of the figures
and that of g is the horizontal direction.

4.2. Two-dimensional scattering intensity

In this section, the simulation results on Hv light scattering
intensity are presented and compared with the experimental
results of PET in terms of the fourfold-symmetry component
I4-fold(q) and the isotropic component Iiso(q), and their
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development with the spherulite growth. Since the spherulite
structure depends on the tilting angle bt as discussed in the
previous section, a proper choice of the value bt may give
a better quantitative reproduction of the experimental results.
Unfortunately, a value of bt giving the best fit to the experi-
mental results was not able to be determined among bt¼ 5�,
10� and 15�. In the following discussion, the simulation results
will be mainly shown for bt¼ 10�, and comparisons are made
with the experimental results.

The two-dimensional patterns of Hv scattering intensity at
N¼ 10, 20 and 40 are shown in Fig. 10aec. These figures
show that the diffusive pattern nearly isotropic with regard

Fig. 8. The edge part of the slice in xey plane for bt¼ 15� at N¼ 70

(50< x< 70, �20< y< 20, �0.5< z< 0.5). The direction of x-axis is verti-

cal in this figure.
to m and decreasing with polar angle q, becomes the four-
fold-symmetry pattern that has peaks against q, as the spheru-
lite grows. The Hv scattering patterns observed in PET
spherulites are shown in Fig. 10d and e: these two experimen-
tal data are selected so that the ratios of the isotropic intensity
component at Iiso(q¼ 0) to the fourfold-symmetry intensity
component at I4-fold(q¼ qmax, m¼ 45�) agree with those of
the simulation results in Fig. 10a and b, where qmax is the
peak position of the scattering intensity. The scattering pattern
corresponding to Fig. 10c was not observed experimentally
because the impingements between spherulites prevented
spherulites from growing.

The Hv scattering intensity, I(q, m), of the polymer spheru-
lites is, as described in Section 1, the sum of the isotropic in-
tensity component independent of the azimuthal angle m and
the fourfold-symmetry intensity component with the m depen-
dence of sin2 2m. Since the m dependence of the scattering
intensity of the simulated spherulite calculated by Eq. (6) is
expressed by Keijzers’ model as shown in Fig. 11, we analyze
the intensity in terms of Keijzers’ model for comparison with
the experimental results. The scattering intensity I(q, m) is de-
composed into the isotropic intensity component, Iiso(q)¼ I(q,
m¼ 0�), and the fourfold-symmetry intensity component,
I4-fold(q, m)¼ I(q, m)� I(q, m¼ 0�), or I4-fold(q)¼ I(q,
m¼ 45�)� I(q, m¼ 0�) for brevity.

Fig. 12 shows Iiso(q) at N¼ 30. The solid line shows I
ð0Þ
iso ðqÞ

by Eq. (2) with the correlation length a¼ 6.78. The isotropic
Fig. 9. The cross-polarized optical micrograph image calculated from the simulation at (a and d) N¼ 20, (b and e) N¼ 40 and (c and f) N¼ 70. (aec) the side

views and (def) the top views of the spherulite.
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Fig. 10. The Hv scattering patterns from the simulation at (a) N¼ 10, (b) N¼ 20, and (c) N¼ 40. The intensity of each figure is normalized at maximum value: the

absolute value of the intensity increases with N. The lower row shows the Hv light scattering patterns from PET spherulites crystallized at 110 �C for (d) 33 min,

(e) 66 min. The q at the edge of the figures is 0.613 for aec and 5.89 mm�1 for d and e.
intensity component Iiso(q) in the simulation can be well fitted
by Eq. (2) in the range 25< N< 50 for bt¼ 10�. The spheru-
lite formation process depends on the tilting angle bt. The
number of steps is normalized by bt

2N as discussed in Section
4.1, and the correlation length by bt

2a. Fig. 13a and b shows

Fig. 11. The azimuthal angle dependence of the scattering intensity in the sim-

ulation at q¼0.26 and N¼ 20. The solid line shows variation of intensity with

m, I(m)¼ c1þ c2 sin2 2m, where c1 and c2 are constants.
the dependence of a on N and that of bt
2a on bt

2N for
bt¼ 5�, 10� and 15�. The results for various bt fall on a single
line. The normalized correlation length bt

2a linearly increases
with bt

2N in the early stage of the crystal growth, and stop in-
creasing, when the spherulite becomes large. The approxi-
mately linear relation between a and the crystallization time,
or the spherulite radius R is observed for iPS [6] and PET
[7]. The size of the crystallite disk is estimated to be about
0.1 mm for bt¼ 10� by comparing the scattering patterns of
the PET spherulite to the simulated ones in Fig. 10. The ratio
I4-fold(qmax)/Iiso(0) is used as the measure of the change of the
pattern. However, a is 0.54 mm at N¼ 20 for bt¼ 10� in this
simulation (Fig. 10b), whereas a is 0.36 mm in corresponding
results in PET spherulites (Fig. 10e). This suggests that a better
agreement would be obtained for a larger bt.

In Fig. 14, the fourfold-symmetry intensity component nor-
malized by the peak intensity, I4-fold(q)/I4-fold(qmax), is plotted
against the normalized scattering vector q/qmax at N¼ 10, 30
and 50. The solid line is the result of Eq. (1) for Iideal(q,
m¼ 45�). Though the ideal spherulite model explains the pro-
file of I4-fold(q) of the simulation results, the deviation from
Iideal(q, m¼ 45�) is observed at large q, and decreases with in-
creasing N. Similar deviation is also observed in the experi-
ment [7,10]. The cross-term of the fourfold-symmetry
intensity component and the isotropic intensity component in
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the scattering amplitude [10], or the size distribution of spher-
ulites [7] is suggested as the origin of the discrepancy. Since
no size distribution is introduced in the simulation, the size
distribution may account for only a part of the discrepancy
observed experimentally. We will discuss about the change
in the scattering profile shortly. The N dependence of the
1/qmax is shown in Fig. 15. This figure shows 1/qmax is approx-
imately proportional to N in the simulation, and we obtain the
relation qmaxN¼ 4.75. The ‘‘spherulite radius’’ R is defined by
4.09/qmax following the convention based on the ideal spheru-
lite model.

According to the disordered spherulite model, the optical
anisotropy giving rise to the fourfold-symmetry intensity com-
ponent is the difference between the tangential and the radial
polarizabilities, Da, in Eq. (1), and that to the isotropic inten-
sity component, the anisotropy d in Eq. (2). Since Iideal(qmax,
m¼ 45�) is proportional to Cn(Da)2R6 by Eq. (1) with
cos q y 1, and I

ð0Þ
iso ðq ¼ 0Þ, to Cnd2R3a3 by Eq. (2),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:178� ðIisoð0ÞR3Þ=ðI4-foldðqmaxÞa3Þ
p

from the simulation is
a measure of the anisotropy ratio jd/Daj. The numerical factor

Fig. 12. The q dependence of the isotropic intensity component at N¼ 30. The

solid line shows I
ð0Þ
iso ðqÞ calculated by Eq. (2) with a¼ 6.78.
Fig. 14. The q dependence of the fourfold-symmetry intensity component at

N¼ 10 (circle), 30 (triangle) and 50 (square) normalized by the peak position

and the peak intensity. The solid line shows Iideal(q, m¼ 45�) calculated by

Eq. (1) with R¼ 4.09/qmax.

Fig. 15. The N dependence of 1/qmax.
Fig. 13. N dependence of a (a) and bt
2N dependence of bt

2a (b) for bt¼ 5� (circle), 10� (triangle) and 15� (square). Radians instead of degrees are used in the figure.
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0.178 is Iidealðq ¼ qmax;m ¼ 45�Þ=I
ð0Þ
iso ðq ¼ 0Þ. Fig. 16 shows

the N dependence of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:178� ðIisoð0ÞR3Þ=ðI4-foldðqmaxÞa3Þ

p
.

The anisotropy ratio approaches a constant, about 2, when
the spherulite becomes large, while in the experiment it is
nearly constant, 4 [7]. Note that the numerical factor is mod-
ified to 0.110 instead of 0.178, in a previous paper [7] where
the size distribution of the spherulites is taken into account.

The present simulation reproduces the characteristic fea-
tures of the Hv light scattering of polymer spherulites ob-
served experimentally: (1) the decomposition of the total
scattering intensity into the isotropic intensity component
Iiso(q) and the fourfold-symmetry intensity component
I4-fold(q, m) by Keijzers’ model (Fig. 11), (2) the approxima-
tion of Iiso(q) by Eq. (2), and Iideal(q, m) by Eq. (1), (Figs.
12 and 14), (3) the correlation between correlation length
a and the spherulite radius R or N (Figs. 13 and 15) and (4)
the correlation between Iiso(q) and Iideal(q, m) through the op-
tical anisotropies d and Da (Fig. 16). Based on the agreement
between the simulation and the experimental results, we fur-
ther examine the simulation results, and will discuss about
the interpretation of Iiso(q) and I4-fold(q, m) in the growth pro-
cess of the spherulite.

Fig. 16. The N dependence of the anisotropy ratio jd/Daj.
4.3. Effects of non-spherical shape and origin of
isotropic scattering

Some simulation results suggest an interpretation different
from the disordered spherulite model for the origins of the
two intensity components. The fourfold-symmetry intensity
component and the isotropic intensity component are ascribed,
respectively, to the ideal spherulitic structure and a perturba-
tion from it in the disordered spherulite model. It is assumed
in the model that one spherulite gives these scattering intensi-
ties. A spherulite in the simulation is anisotropic due to the
orientation of the nucleus. Fig. 17 shows the scattering
patterns from a spherulite whose nucleus has a particular ori-
entation. This figure shows the anisotropic pattern although
the scattering pattern averaged over the nucleus orientation
has the fourfold symmetry (Fig. 10). The fourfold-symmetry
intensity component I4-fold(q, m) can be approximated to the
scattering from the ideal spherulite model (Eq. (1)) when we
separate the total scattering intensity I(q, m) according to
Keijzers’ model, but the spherulite has not become spherical
(Fig. 9). As proved in Appendix, the spherulite with the axi-
symmetric distribution of polarizability in general gives the
scattering intensity of Keijzers’ model by averaging over the
orientation of the nucleus.

We propose a new interpretation for the development of the
Hv light scattering intensity, which is analogous to the fan
model [11], as follows. (i) In the early stage of the crystal
growth, the spherulite is made up of the crystallites with rela-
tively uniform orientation (the central part of Fig. 4). The
spherulite is approximated by a circular or hexagonal disk
with uniform polarizability, growing with crystallization
time. One spherulite gives the anisotropic Hv scattering inten-
sity (Fig. 17b), and the intensity averaged over the orientation
mainly consists of the isotropic intensity component
(Fig. 10a). Even when the uniform part is small thin disk,
the intensity I(q, m) is m dependent, so far as the shape of
this part is not spherical (Appendix). The difference in in-
tensity I(q, m)� I(q, m¼ 0�) is therefore meaningless as
a ‘‘spherulite’’ scattering in this stage. (ii) In the fanning stage,
Fig. 17. The scattering intensity patterns from a spherulite oriented in a particular direction shown in (a), (b) N¼ 10, (c) N¼ 20 and (d) N¼ 40. The cross-lines in

(a) indicate the directions of the polarizer and the analyzer.
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the crystallites with more or less spherical symmetry grow
around the central part with uniform polarizability which
may be still growing, and the spherulite approaches spherical
in shape (Fig. 9a, b and d, e). The scattering from single spher-
ulite is still anisotropic (Fig. 17c and d), and the orientation
averaged intensity I(q, m) consists of both components Iiso(q)
and I4-fold(q, m) (Fig. 10b and c). Both the central part with
uniform polarizability and the spherically symmetric parts
give contribution to Iiso(q) with a main contribution from the
former, and I4-fold(q, m) with a main contribution from the lat-
ter. As the spherulite grows, the volume fraction of the central
uniform part decreases. Then I4-fold(q, m) dominates over
Iiso(q) and is better described by the ideal spherulite model,
Eq. (1), with the growth of the spherulite as shown in
Fig. 14. (iii) In the matured stage, only the spherically sym-
metric parts grow and the spherulite becomes fully spherical,
mainly giving the I4-fold(q, m). Note that the effects of the fluc-
tuation in orientation in a short distance and of the size distri-
bution are completely neglected in the present discussion. In
the present study, the development from stage (i) to (ii) is sup-
posed to be simulated. In a still more rough description, the
uniform circular disk grows in the initial stage. The intensity
I(q, m) is given by the scattering from the uniform disk.
Then, the spherically symmetric parts start growing on the uni-
form disk, giving I4-fold(q, m), and at the same time the uniform
disk giving Iiso(q) stops growing. In the final stage, spherulite
increases the diameter, and I(q, m) is given by Iideal(q, m).

In the disordered spherulite model, the value of a expresses
the correlation length of perturbation in the crystallite orienta-
tion, and the increase in a is interpreted as the ordering in the
orientation of the crystallites. According to our interpretation
above, Iiso(q) originates from the uniform central part and is
no longer expressed by I

ð0Þ
iso ðqÞ of Eq. (2). At some stages,

25< N< 50 for bt¼ 10� in the simulation, Eq. (2) can be
a good approximation for Iiso(q) as shown in Fig. 12. Since
Iiso(q) is, in principle, expressed in terms of the shape and
the size of the uniform central part and decreases with q apart
from the oscillation at high q, the ‘‘correlation’’ length a is
regarded as the size of the uniform part, which grows with
crystallization time in stages (i) and (ii). In the disordered
spherulite model the spherulite radius R is given by 4.09/
qmax. In our interpretation the profile of I4-fold(q) and its
peak position qmax depends on the size and the shape of the
spherulite: the value of 1/qmax is approximately proportional
to the size of spherulite in stage (ii) and 4.09/qmax gives the
spherulite radius in stage (iii). The melt-grown axialites or he-
drites will be a suitable system, and the Vv scattering experi-
ments as well as the Hv scattering will give effective
information in order to examine the above interpretation [15].

In summary, we have simulated the growth of a spherulite
and calculated the Hv scattering intensity. The simulation re-
sults well reproduce the prominent features characterizing
the Hv scattering intensity observed in the experiment. We
have proposed an interpretation on the development of the
Hv light scattering intensity in the spherulite formation pro-
cess: at first the crystallites with uniform orientation grow
and the spherulite mainly gives the isotropic intensity
component. Then, the spherulite fans out by the overgrowth
of the crystallites with spherical symmetry on the central uni-
form part and gives both the isotropic intensity component and
the fourfold-symmetry intensity component. The spherulite
that has grown sufficiently spherical mainly gives the ideal
spherulite intensity.

Appendix

Let us consider a scattering body in which the polarizability
is symmetrically distributed around a certain axis. When such
scattering bodies are randomly oriented and spaced, we show
that the resulting Hv light scattering is in general given by the
sum of the intensity with the fourfold symmetry with regard to
the azimuthal angle m and the one independent of m.

The scattered electric field E given by

EðqÞ ¼ C0
Z �

M$bO�e�iq$rdr; ð8Þ

MðrÞ ¼ aðrÞE0; ð9Þ

where C0 is a constant, M, the induced dipole moment, r, the
position vector, a(r), the polarizability tensor at position r, E0,
the electric filed of the incident beam, q, the scattering vector
and Ô is the unit vector which is perpendicular to the pro-
pagation direction of the scattered ray and lies in a plane
containing the polarization direction of the analyzer Â and
perpendicular to the analyzer plane. In the following calcula-
tion of the Hv scattering intensity, the x-axis is defined as
the polarization direction of the analyzer, the y-axis as that
of the polarizer and the z-axis as the light propagation direc-
tion. When a scattering angle is small, Ô can be approximated
by Â. In this case the amplitude of the Hv light scattering
EHv is

EHV
ðqÞ ¼ C0

Z
axyðrÞe�iq$rdr; ð10Þ

where axy is the xy component of a in the Cartesian basis
representation.

We give an outline of the following calculation. (1) The
distribution of the polarizability tensor which is rotationally
symmetric around the z-axis is expanded by the spherical
harmonic functions. (2) The scattering body is rotated and
the orientation is specified by a set of Euler angles a, b and
g (g¼ 0). (3) The scattering amplitude EHv(q; a, b) is calcu-
lated for the rotated body. (4) The intensity jEHv(q; a, b)j2 is
averaged over a and b, and the m dependence of the averaged
intensity is examined.

A polarizability tensor is written as

a¼ axx þ ayyþ azz

3
Iþ S; ð11Þ
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S¼ 1

3

0@2axx � ayy� azz 3axy 3azx

3axy 2ayy � axx � azz 3ayz

3azx 3ayz 2azz� axx � ayy

1A
ð12Þ

where I is the unit tensor. A symmetric traceless tensor S
is expressed by a linear combination of irreducible tensors
of the second rank c2i (i¼�2, �1, 0, 1, 2):

S¼
X

i

tiðrÞc2i; ð13Þ

where c2i in the Cartesian coordinate frame are

c20 ¼
1

3

0@�1 0 0
0 �1 0
0 0 2

1A; ð14Þ

c2�1 ¼H
1ffiffiffi
6
p

0@0 0 1
0 0 �i
1 �i 0

1A; ð15Þ

c2�2 ¼
1ffiffiffi
6
p

0@ 1 �i 0
�i �1 0
0 0 0

1A: ð16Þ

The xy component of a can be expressed in terms of the
coefficients ti by

axyðrÞ ¼
iffiffiffi
6
p ðt2ðrÞ � t�2ðrÞÞ: ð17Þ

In a polar coordinate system (r, q, 4), the angular distribution
of the polarizability tensor is expressed by a linear combina-
tion of tensor spherical harmonics:

Yls
jmðq;4Þ ¼

X
m0 ;s

Cjm
lm0ssYlm0 ðq;4Þcss; ð18Þ

where s (¼2) is a rank of irreducible tensor and Ylm’ is a spher-
ical harmonic function. In the language of the wave functions
with a spin quantum number s, j is a total angular momentum,
m, its projection quantum number, l, an orbital angular mo-
mentum and Cjm

lm0ss, the ClebscheGordan coefficient.
When a tensor distribution of a scattering body has the

rotational symmetry around the z-axis, m¼ 0 holds. Then a
distribution of symmetric traceless tensors is expressed by

Sðr;q;4Þ ¼
X

jl

ajlðrÞYl2
j0ðq;4Þ; ð19Þ

where ajl(r) is an r-dependent expansion coefficient.
Now, the scattering body is rotated by the Euler angles (a,

b, g). From the symmetry, we set g¼ 0. A rotated distribution
S0 is given by

S0ðr;q;4Þ ¼ bDða;b;gÞSðr;q;4Þ
¼
X

j;l

aj;lðrÞ
X

m

Yl2
jmðq;4ÞD

ðjÞ
m0ða;b;0Þ; ð20Þ

where bDða; b;gÞ is the rotation operator and D
ðjÞ
m0mða; b;gÞ is

the Wigner D function, which is in the present case given by

D
ðjÞ
m0ða;b;gÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4p

2jþ 1

s
Y�jmðb;aÞ: ð21Þ

Substituting Eqs. (18) and (21) into Eq. (20) gives the coeffi-
cients of c22 and c2�2 as

t�2ðrÞ ¼
XN
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
4p

2jþ 1

s Xjþ2

l¼jj�2j
ajlðrÞ

�
Xj

m¼�j

Cjm
lmH22�2YlmH2ðq;4ÞY�jmðb;aÞ: ð22Þ

The scattering amplitude from the rotated distribution,
EHv(q; a, b), is given by Eqs. (10), (17) and (22) as

EHv
ðq; a;bÞ ¼ i

ffiffiffiffiffiffi
4p
p

C0ffiffiffi
6
p

XN
j¼0

Xj

m¼�j

Xjþ2

l¼jj�2j

1ffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1
p Y�jmðb;aÞ

�
Z

ajlðrÞfjlm

�
q;4
�
e�iq$rdr; ð23Þ

where

fjlm

�
q;4
�
¼ Cjm

lm�222Ylm�2ðq;4Þ �Cjm
lmþ22�2Ylmþ2ðq;4Þ:

The partial wave expansion,

expð�iq$rÞ ¼ 4p
XN
l¼0

Xl

m¼�l

ð�iÞljlðqrÞYlmðn;mÞY�lmðq;4Þ; ð24Þ

where q, n and m are the polar coordinates in the reciprocal
space and jl(qr) is the spherical Bessel function, and the or-
thogonality and the normalization relation of the spherical
harmonics lead to

EHV
ðq; a;bÞ ¼ 8p3=2iC0ffiffiffi

6
p

XN
j¼0

Xj

m¼�j

Xjþ2

l¼jj�2j

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1
p Y�jmðb;aÞbjlðqÞgjlmðn;mÞ; ð25Þ

where

gjlmðn;mÞ ¼ Cjm
lm�222Ylm�2ðn;mÞ �Cjm

lmþ22�2Ylmþ2ðn;mÞ

and

bjlðqÞ ¼ ð� iÞl
Z

ajl

�
r
�
jl

�
qr
�
r2dr:

The intensity from the scattering body IHv(q) is obtained by
averaging over the Euler angles a and b:
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IHV
ðqÞ ¼ 1

4p

Z
jEHvðq; a;bÞj2 sin bda db

¼ 8p2C02

3

XN
j¼0

Xj

m¼�j

Xjþ2

l1¼jj�2j

Xjþ2

l2¼jj�2j

� 1

2jþ 1
bjl1ðqÞbjl2ðqÞ

�
gjl1mðn;mÞgjl2mðn;mÞ�; ð26Þ

By using Ylmðn;mÞ ¼ Ylmðn; 0Þeimm, we obtain

gjl1mðn;mÞgjl2mðn;mÞ�¼ hþjl1mðnÞhþjl2mðnÞ þ h�jl1mðnÞh�jl2mðnÞ
� hþjl1mðnÞh�jl2mðnÞe�4im

� h�jl1mðnÞhþjl2mðnÞe4im; ð27Þ

where

h�jlmðnÞhCjm
lmH22�2YlmH2ðn;0Þ:

The intensity is therefore expressed by

IHV
ðqÞ¼8p3C2

3

XN
j¼0

Xj

m¼�j

Xjþ2

l1¼jj�2j

Xjþ2

l2¼jj�2j

1

2jþ1
Fjml1l2ðq;n;mÞ ð28Þ

where

Fjml1l2ðq;n;mÞ

¼Re
�
bjl1

�
q
�
bjl2ðqÞ

���
hþjl1mðnÞhþjl2mðnÞþh�jl1mðnÞh�jl2mðnÞ

	
�cos4mRe

�
bjl1

�
q
�
bjl2ðqÞ

���hþjl1mðnÞh�jl2mðnÞþh�jl1mðnÞhþjl2mðnÞ
	

�2sin4mIm
�
bjl1

�
q
�
bjl2ðqÞ

���hþjl1mðnÞhþjl2mðnÞþh�jl1mðnÞh�jl2mðnÞ
	
:

ð29Þ
Eqs. (28) and (29) show that the scattering intensity consists of
a component independent of m and another component with
the fourfold symmetry regarding m.

The component ( j, l )¼ (0, 2) in the summation of Eq. (19)
expresses the polarizability distribution of the spherical sym-
metry, i.e., that of the ideal spherulite, and ( j, l )¼ (2, 0),
the uniform distribution of polarizability. When the shape of
the scattering body is a sphere, the component ( j, l )¼ (0, 2)
in jEHv(q; a, b)j2 or in Eq. (28) is reduced to Eq. (1) of the
ideal spherulite model with C02¼ C and Da ¼

ffiffiffiffiffiffiffiffiffiffiffi
1=4p

p
, and

the component ( j, l )¼ (2, 0) in Eq. (28) gives the isotropic
scattering intensity independent of m.
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